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An Application of the Newsvendor Model to Production Theory under Demand Uncertainty

Hiroaki Aoki*

Abstract 

Traditional production theory assumes that supply and demand are always balanced and all 

products are sold. However, in the present study, we investigate a model of production that allows for 

surplus and shortage in sales of output under uncertainty of quantity demanded, generalizing the 

model by introducing a salvage price for surplus and a penalty cost for shortage. This model is an 

application of the newsvendor model to production theory. According to traditional production theory, 

the level of output depends on prices and production technology. However, we explain that it also 

depends on the probability distribution of demand and the nature of the product with respect to 

maintaining its quality and reputation, as well as on the degree of damage due to the cost of loss of 

trust by supply shortages. 

We conclude that output and profit are smaller under demand uncertainty than under certainty and 

compare output and profit across several cases under uncertainty. We classify the conditions for the 

existence of optimal output under certainty and uncertainty into three cases. We also show that adding 

demand uncertainty to the model provides the robustness necessary to ensure the existence of finite

optimal output. In addition, we perform a numerical analysis and illustrate our discussion with a 

diagram showing the relationship between output under demand uncertainty and progress in 

production technology. 

Our model under demand uncertainty, which assumes that firms seek to maximize expected profit 

and set only the quantity of output, represents a simple and special case of the more generalized 

model. However, this assumption leads to new results that will be helpful in facilitating analyses of 

production theory under demand uncertainty. 
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Ⅰ Introduction 
 

Production theory and traditional economics studies usually assume that supply and demand are 

always balanced, with the result that there are no goods remaining unsold due to insufficient demand 

and no lost opportunities for sales due to supply shortages. In the real world, however, it is 

questionable whether markets are that simple or firms are that optimistic.  

According to traditional production theory, the level of output depends on price and production 

technology. However, in the present study, by distinguishing between supply and demand in sales and 

considering excess demand and shortage of supply under demand uncertainty, we explain how the 

level of output also depends on the probability distribution of demand and the nature of the product 

with respect to maintaining its quality and reputation, as well as on damage due to the cost of loss of 

trust by supply shortages. We demonstrate that both output and profit are smaller under demand 

uncertainty than under certainty. With respect to profit, our result is in contrast to the result obtained 

by Oi (1961), who finds that optimal profit is larger under price uncertainty than under certainty. 

This analysis, which distinguishes between supply and demand in sales, is treated as the 

newsvendor problem in inventory studies, such as Arrow, Harris, and Marschak (1951), Arrow, 

Karlin, and Scarf (1958), and Hadley and Whitin (1963) in early research, as well in numerous 

subsequent studies. In inventory studies, the newsvendor model has been applied to perishable or 

seasonal goods that decrease in value after the sales period. However, when considering discounts 

due to various types of deterioration or obsolescence, even non-perishable and non-seasonable goods 

will tend to decrease in value after the sales period. Moreover, when possible fines or the cost of loss 

of trust due to goods being out of stock are taken into account, the newsvendor model can be applied 

to an even wider range of goods. This study treats such goods. Eppen (1979), Chen and Lin (1989), 

Chang and Lin (1991), Cherikh (2000), and Lin, Chen, and Hsieh (2001) apply a salvage price for 

unsold goods and a penalty cost for out-of-stock goods to the inventory model in order to study the 

effects of centralizing inventory systems. 

Practically, Mills (1959) and Hymans (1966) discuss production theory within a framework that 

distinguishes between supply and demand in sales. Mills (1959) assumes that firms set both the price 

and quantity of output to maximize expected profit and obtain results that compare optimal prices 

between certainty and uncertainty. Mills (1959) uses the difference in demand from the average as a 

stochastic variable, whereas we use quantity demanded itself as a stochastic variable to facilitate our 

analysis. Hymans (1966) demonstrates that output is less under uncertainty than under certainty, on 

the assumption that expected utility is maximized. These researchers made the application of a model 

that distinguishes between supply and demand in sales, namely the newsvendor model, to production 
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theory. However, their arguments are complex and difficult to apply to other analyses. In contrast, we 

assume that firms set only the quantity of output and maximize the expected profit. Although in that 

sense our model represents a special case, it opens the way to simple discussions and yields new 

results that are easy to apply to other analyses under the same assumptions. 

In constructing our model, we begin by applying the simple newsvendor model with only a sales 

price to production with the aim of maximizing expected profit, then we proceed to a generalized 

model by adding a salvage price for unsold goods and a penalty cost for out-of-stock goods. This is a 

novel approach. We also compare output and profit across the newsvendor models and obtain new 

conclusions. We classify the conditions for the existence of optimal output under certainty and 

uncertainty into three cases and show that the newsvendor model provides the robustness necessary 

for the model of production to ensure the existence of finite optimal output even when the cost 

function is concave, which is the opposite case to convex. 

We perform a numerical analysis assuming a normal distribution for the quantity demanded and 

compare the optimal output and the maximum profit across the cases under demand certainty and 

uncertainty. This numerical analysis illustrates the above discussion graphically and shows that the 

higher the production technology, the larger the reducing effect of demand uncertainty on output, and 

that the output is less affected by technological progress under demand uncertainty than under certainty. 

 

Ⅱ A simple model of production applying the newsvendor model 
 

In this model, we assume that the quantity demanded always matches output under demand 

certainty, while it is stochastic under uncertainty. We let p be the product price of a good, q be the 

output, and c(q) be the cost function. We assume that c(q) is strictly increasing, convex, and twice 

differentiable, and 0 = c(0). Thus, 0 < c’(q) and 0 ≤ c’’(q) for any positive q unless otherwise 

specified. We let x be the non-negative stochastic quantity demanded for the good under uncertainty 

in a period and subject to a probability density function f (x). We let qm be the maximum value of q 

that satisfies � 𝑓𝑓�𝑥𝑥�𝑑𝑑𝑑𝑑�
� = 0 and qM be the minimum value of q that satisfies � 𝑓𝑓�𝑥𝑥�𝑑𝑑𝑑𝑑�

�  = 0.1） Thus, 

0 ≤ qm < qM holds.2） It is assumed that 0 < f (x) for qm < x < qM and c’(qm) < p < c’(∞).3） The 

meaning of c’(qm) < p < c’(∞) with respect to the existence of the solution for q under demand 

certainty and uncertainty will be discussed later. 

First, we consider a simple model with only p, and later we generalize the model by introducing a 

 
1）qM can be infinite. 
2）If qm=qM, x is no longer a random variable. 
3）p < c’(∞) precisely means that some sufficiently large value of q satisfies p < c’(q).  
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salvage price for surplus and a penalty cost for shortage. Under demand uncertainty, if the demand is 

smaller than the output, the quantity sold equals the demand, while if the demand is larger than the 

output, the quantity sold equals the output. We call this premise the newsvendor model and apply it to 

production theory. In the simple model applying the newsvendor model with only p, we let R be the 

expected profit and R(q) be its function of q, which is given by 

𝑅𝑅 = 𝑅𝑅�𝑞𝑞� = 𝑝𝑝 �� 𝑥𝑥𝑝𝑝�𝑥𝑥�
�

�
𝑑𝑑𝑑𝑑 + � 𝑞𝑞𝑝𝑝�𝑥𝑥�

�

�
𝑑𝑑𝑥𝑥� 𝑑 𝑑𝑑�𝑞𝑞�.                                                                    (1) 

The first-order condition to maximize R(q) is given by 

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝑝𝑝� 𝑝𝑝(𝑥𝑥)
�

�
𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑�(𝑞𝑞) = 0.                             (2) 

The second-order condition is satisfied as follows: 

𝑑𝑑�𝑅𝑅 𝑅𝑅𝑅𝑅� = −𝑝𝑝𝑝𝑝(𝑥𝑥) −𝑐𝑐 ��(𝑞𝑞) ≤ 0.                                    (3) 
Under demand certainty, the first-order condition for profit maximization is p = c’(q). By 

comparing this equation with Eq. (2), we can intuitively grasp that the optimal output is larger under 

certainty than under uncertainty. Nevertheless, we rigorously verify the existence of the solution and 

compare the optimal outputs under demand certainty and uncertainty. 

We let qc and qp be the optimal outputs under demand certainty and uncertainty, respectively. 

Thus, p = c’(qc) holds and qp satisfies Eq. (2). We show that qm < qp <qc holds. Since c’(qm)/p < 1< 

c’(∞)/p from the assumption, it follows that qc satisfying 1=c’(qc)/p exists and qm < qc < ∞ holds from 
the continuity of c’(q). Letting D(q) = dR/dq = p� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 �

� – c’(q) = p – c’(q) – p� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�
� , 0<D(qm) 

= p – c’(qm) and 0>D(qc) = – p� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑��
�  hold since qm < qc. Since D(qp) = 0, it follows that qp exists 

in the range of qm < qp < qc. D(qM) = – c’(qM) < 0 also holds, so qm < q p< qM and 0<� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�
�� <1 

hold. It is indeterminate whether qc or qM is larger.  

From the above, we obtain the following proposition: 

Proposition 1 
In the simple newsvendor model with only p, qc > qp and qm < qp < qM hold. 

 

Equation (2) shows how output is determined by the probability distribution of demand in addition 
to price and production technology, and that the firm should make � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�

� , which can be called the 

sold-out rate, equal to c’(q)/p at the optimal output. 

Figure 1 illustrates the solutions of q under demand certainty and uncertainty. Taking q on the 
horizontal axis, and c’(q) and 𝑝𝑝� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�

�  on the vertical axis, the intersection point of the two 

curves of c’(q) and 𝑝𝑝 � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�
�  marks the solution of (2), which is the optimal output under 

uncertainty, while the intersection point of the curve of c’(q) and the horizontal line from p on the 
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vertical axis is the optimal output under certainty. By comparing the two intersection points, 

Proposition 1 can be confirmed. As long as c’(qm) < p < c’(∞) holds, no matter how large the mean of 

the distribution is or how far to the right the distribution spreads, qc > qp always holds. 

        
Figure 1. The optimal values of q under certainty (qc) and uncertainty (qp)  

in a simple model 

The conditions for the existence of a solution for q under demand certainty and uncertainty are 

classified into the three cases, depending on the position of c’(q) relative to the horizontal line from p 

on the vertical axis and qm in Figure 1. The three cases and their implications are described below. 

Figure 1 corresponds to Case 3). 

Case 1)  p < c’(0) 

c’(q) is completely above the horizontal line from p on the vertical axis. This implies that 

productivity is too low, so solutions do not exist under either certainty or uncertainty. 

Case 2)  p = c’(q) for some q in 0 ≤ q ≤ qm 

    c’(q) intersects the line segment to the right of p on the vertical axis and to the left of qm. A 

solution exists under certainty, but not under uncertainty. 

Case 3)  p > c’(qm) 

   c’(q) intersects the line segment from p to the right of qm. Solutions exist under both certainty 

and uncertainty, where the solution under certainty is larger than that under uncertainty. 

In the present study, we examine when solutions exist under uncertainty, so we treat Case 3). 

Traditional theory treats Case 2). 

Next, let us consider the case where c(q) is concave (the opposite of the convex case), meaning that 
c’’(q) ≤ 0. Under certainty, without � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�

� , dR/dq > 0 can hold at (2) as q approaches ∞, which 

implies that there is no finite optimal output. Conversely, under uncertainty, dR(q)/dq <0 holds for 

c'(q)

qcqp

p

uncertainty  p∫q∞ f (x)dx 
p∫q

∞ f (x)dx

certainty

qm

qM
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any q in q0 < q, where q0 is a positive value, since � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�
�  goes to 0 as q goes to qM.4） This 

implies that R(q) reaches a maximum value for q somewhere in the range of q ≤ q0, and that 

uncertainty in the quantity demanded, i.e., the newsvendor model, provides the robustness necessary 

for optimal output to exist. 

 

Ⅲ A generalized model with a salvage price and a penalty cost 
 

To generalize our model, we introduce a salvage price for surplus and a penalty cost for shortage. We 

assume that when demand is less than supply, a certain amount of revenue is generated for the surplus, 

q – x, at a salvage price s per unit, and when demand is greater than supply, a certain penalty cost is 

generated for the shortage, x – q, at a penalty cost v per unit. Our model assumes that 0 ≤ s < p, 0 ≤ v, 

and that the salvage price and unit cost are constant. Letting RG be the generalized expected profit, 

adding s and v to R of (1), and letting RG(q) be its function of q, we obtain the following equation: 

𝑅𝑅� = 𝑅𝑅�(𝑞𝑞) = � (𝑝𝑝𝑝𝑝 + 𝑠𝑠(𝑞𝑞 𝑞 𝑞𝑞))𝑓𝑓(𝑥𝑥)
�

�
𝑑𝑑𝑑𝑑 + � (𝑝𝑝𝑝𝑝𝑝  𝑝𝑝(𝑥𝑥 𝑥𝑥𝑥 ))𝑓𝑓(𝑥𝑥)

�

�
𝑑𝑑𝑑𝑑𝑑  𝑑𝑑(𝑞𝑞).                 (4) 

Let 𝐴𝐴 = 𝑠𝑠 � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�
� + (𝑝𝑝 + 𝑣𝑣)� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�

�  and A(q) denote its function of q. Let α = p – s + v, where α 

> 0 holds. dA/dq = (– p + s – v) f (q) = – α f (q) holds where dA/dq < 0 for qm < q < qM and dA/dq = 0 

for q ≤ qm or qM ≤ q. The first-order condition for the maximum RG(q) is given by 

𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑 = 𝑠𝑠� 𝑓𝑓(𝑥𝑥)
�

�
𝑑𝑑𝑑𝑑 + (𝑝𝑝 + 𝑣𝑣)� 𝑓𝑓(𝑥𝑥)

�

�
𝑑𝑑𝑑𝑑𝑑  𝑑𝑑�(𝑞𝑞)                                                                (5) 

= 𝐴𝐴(𝑞𝑞) −𝑐𝑐 𝑐(𝑞𝑞) = 0.                                                                                                                      
The second-order condition is satisfied as follows: 

𝑑𝑑�𝑅𝑅� 𝑑𝑑𝑑𝑑� = −𝛼𝛼𝛼𝛼(𝑥𝑥) −𝑐𝑐 ��(𝑞𝑞) ≤ 0.                                 (6) 
Equation (5) shows that, in addition to price and production technology, and the probability distribution 

of demand, the output also depends on the nature of the product with respect to maintaining its quality 

and reputation, as well as on the degree of damage caused by supply shortages, which are represented 

by s and v. 

In addition to qp, which is the optimal output value when s=0 and v=0, we assign that value to qs 

when s>0 and v=0, to qv when s=0 and v>0, and to qsv when s>0 and v>0. We also let qG represent all 

types of optimal q in the generalized model. Similarly, we let Ap be A when s=0 and v=0, As be A 

when s>0 and v=0, Av be A when s=0 and v>0, and Asv be A when v>0 and s>0. We let A represent the 

 
4）Strictly speaking, for example, even when c’’(q)≤0, if c0≤c’(q) holds as q approaches qM, where c0 is some 

small positive value, dR(q)/dq < 0 holds for any q in q0 < q. 
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generalized types of A. We let Ap(q), As(q), Av(q), and Asv(q) denote the functions of Ap, As, Av, and Asv 

for q, as follows: 

𝐴𝐴� = 𝐴𝐴�(𝑞𝑞) = 𝑝𝑝� 𝑓𝑓(𝑥𝑥)
�

�
𝑑𝑑𝑑𝑑 = 𝑝𝑝 𝑝 𝑝𝑝� 𝑓𝑓(𝑥𝑥)

�

�
𝑑𝑑𝑑𝑑 ,                                                                                                (7a) 

𝐴𝐴� = 𝐴𝐴�(𝑞𝑞) = 𝑠𝑠� 𝑓𝑓(𝑥𝑥)
�

�
𝑑𝑑𝑑𝑑 + 𝑝𝑝� 𝑓𝑓(𝑥𝑥)

�

�
𝑑𝑑𝑑𝑑 = 𝑝𝑝 𝑝 (𝑝𝑝 𝑝 𝑝𝑝)� 𝑓𝑓(𝑥𝑥)

�

�
𝑑𝑑𝑑𝑑 ,                                                           (7b) 

𝐴𝐴� = 𝐴𝐴�(𝑞𝑞) = (𝑝𝑝 + 𝑣𝑣)� 𝑓𝑓(𝑥𝑥)
�

�
𝑑𝑑𝑑𝑑 = 𝑝𝑝 𝑝 𝑝𝑝� 𝑓𝑓(𝑥𝑥)

�

�
𝑑𝑑𝑑𝑑 + 𝑣𝑣� 𝑓𝑓(𝑥𝑥)

�

�
𝑑𝑑𝑑𝑑 ,                                                         (7c) 

𝐴𝐴�� = 𝐴𝐴��(𝑞𝑞) = 𝑠𝑠� 𝑓𝑓(𝑥𝑥)
�

�
𝑑𝑑𝑑𝑑 + (𝑝𝑝 + 𝑣𝑣)� 𝑓𝑓(𝑥𝑥)

�

�
𝑑𝑑𝑑𝑑 = 𝑝𝑝 𝑝 (𝑝𝑝 𝑝 𝑝𝑝)� 𝑓𝑓(𝑥𝑥)

�

�
𝑑𝑑𝑑𝑑 + 𝑣𝑣� 𝑓𝑓(𝑥𝑥)

�

�
𝑑𝑑𝑑𝑑.               (7d) 

We define Rp(q) to be RG(q) when s=0 and v=0, Rs(q) to be RG(q) when s>0 and v=0, Rv(q) to be 

RG(q) when s=0 and v>0, Rsv(q) to be RG(q) when s>0 and v>0. We let Rp, Rs, Rv, and Rsv be the 

maximum values of Rp(q), Rs(q), Rv(q), and Rsv(q), respectively. Thus, Rp = Rp(qp), Rs = Rs(qs), Rv = 

Rv(qv), and Rsv= Rsv(qsv). 

From (5), it follows that Ap(qp) = c’(qp), As(qs) = c’(qs), Av(qv) = c’(qv), and Asv(qsv) = c’(qsv). We 

verify the existence of qG and show its range. 

We let DG(q) = dRG(q)/dq = A(q) – c’(q) and qMc represent the larger of qM and qc. Thus, DG(qm) = p 

+ v – c’(qm) > 0 and DG(qMc) = s – c’(qMc) < p – c’(qMc) ≤ p – c’(qc) = 0. Therefore, qG exists from the 

continuity of DG(q), and qm < qG < qMc and 0 < � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 ��
�  hold. We let Dv(q) = dRv(q)/dq = Av(q) – 

c’(q). Thus, Dv(qm) = p + v – c’(qm) > 0 and Dv(qM) = – c’(qM) < 0. The range of qv is qm < qv < qM, 

which is narrower than or equal to that of qG. 

Next, we compare qp, qs, qv, and qsv. In making comparisons between pairs of these quantities, we 

assume that p, s, and v have the same value when the values of both are positive. Figure 2 in the later 

section provides an intuitive illustration of the results. However, in our analysis, we compare their 

values rigorously. 

Since qG exists in the range of qm < qG < qMc and qv exists in the range of qm < qv < qM, using 0 ≤ 

c’’(q) and dAG/dq ≤ 0, we can say the following from (7a), (7b), (7c), and (7d). 
For any q in qm < q ≤ qp, since 0 < � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�

� , c’(q) ≤ c’(qp) = Ap(qp) ≤ Ap(q) < As(q) holds. Thus, 

As(q) = c’(q) does not hold and qs does not exist in the range of qm < q ≤ qp. Accordingly, qp < qs. 

Similarly, for any q in qm < q ≤ qs, c’(q) ≤ c’(qs) = As(qs) ≤ As(q) < p holds. Thus, p = c’(q) does not 

hold and qc does not exist in the range of qm < q ≤ qs. Accordingly, qs < qc. For any q in qm < q ≤ qv, 

c’(q) ≤ c’(qv) = Av(qv) ≤Av(q) <Asv(q) holds. Thus, Asv(q) = c’(q) does not hold and qsv does not exist in 

the range of qm < q ≤ qv. Accordingly, qv<qsv. For any q in qm < q ≤ qp, c’(q) ≤ c’(qp) = Ap(qp) ≤ Ap(q) < 
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Av(q) holds, since 0<� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�
�  as qp <qM. Thus, c’(q) = Av(q) does not hold and qv does not exist in 

the range of qm < q ≤ qp. Accordingly, qp <qv. 

To compare qs and qsv, we consider the two cases of qc ≤ qM and qc > qM. In the case of qc ≤ qM, for any q 

in qm < q ≤ qs, c’(q) ≤ c’(qs) = As(qs) ≤ As(q) < Asv(q) holds, since q s< qM = qMC. Thus, c’(q) = Asv(q) does 

not hold and qsv does not exist in the range of qm < q ≤qs. Accordingly, qs < qsv holds. Next, we consider the 

case of qc > qM. If qs < qM, for any q in qm < q ≤ qs, c’(q) ≤ c’(qs) = As(qs) ≤ As(q) < Asv(q) holds. Thus, c’(q) 

= Asv(q) does not hold and qsv does not exist in the range of qm < q ≤qs. Accordingly, qs < qsv. If qM ≤ qs, for 

any q in qm < q < qM, c’(q) ≤ c’(qs) = As(qs) < As(q) < Asv(q) holds. Thus, c’(q) = Asv(q) does not hold and 

qsv does not exist in the range of qm < q < qM. Accordingly, qM ≤ qsv.  

Therefore, we obtain the following proposition: 

Proposition 2 
In the generalized newsvendor model that includes s and v in addition to p, qm < qG < qMc holds, in 

detail, qp < qs < qc, qp < qv < qsv, and qv <qM hold.  

Moreover, qs < qsv holds in the case of q c≤ qM, and qs < qsv holds if qs < qM while qM ≤ qsv holds if 

qM ≤ qs in the case of qc > qM. 

 
qs < qc means that adding any positive value of s to the simple model with only p still ensures that q 

is smaller under uncertainty than under certainty. Proposition 2 also implies that adding s or v to the 

simple model increases output. Adding s to the generalized model with only v increases output, and 

adding v to the generalized model with only s increases output in the cases indicated. In addition, if 

qM ≤ qs in the case of qc > qM, c’(qs) = As(qs) = s = Asv(qsv) = c’(qsv) holds. Thus, under the assumption 

of 0 ≤ c’’(q), whether qs and qsv equal or are different is indeterminate. However, qs equals qsv under 

the assumption of 0 < c’’(q). The above discussion and the results deriving from Proposition 2 will be 

illustrated later in Figure 2. 

 

Ⅳ Comparison of maximum profit under demand certainty and uncertainty 
 

We compare the maximum profit under demand certainty and uncertainty at the same price and 

unit cost. RG(qG) is the maximum value of RG in the generalized model under uncertainty. We let Rc 

be the maximum profit under certainty. Transforming (4), we obtain the following equation: 

𝑅𝑅�(𝑞𝑞�) = 𝑝𝑝𝑝𝑝�  − 𝑐𝑐(𝑞𝑞�) − (𝑝𝑝 𝑝 𝑝𝑝)� (𝑞𝑞� − 𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
��

�
+ �� (𝑞𝑞� − 𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑

�

��
                  (8) 

< 𝑝𝑝𝑝𝑝�  − 𝑐𝑐(𝑞𝑞�) =  𝑅𝑅�.                                                                                                                      
The above inequality holds since 0 ≤ qG – x in the first integral and qG – x < 0 in the second 
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integral, and pqG – c(qG) ≤ pqc – c(qc) holds since qc maximizes pq– c(q). 

Therefore, for the same price and unit cost, we obtain the following proposition. 

Proposition 3 
The maximum expected profit under demand uncertainty, RG(qG), is less than the maximum profit 

under certainty, Rc. 

 

This conclusion contrasts with the finding by Oi (1961) that profit is larger under price uncertainty 

than under certainty. 

We compare the maximum values of each type of RG. In making comparisons between pairs of 

these quantities, we assume that p, s, and v have the same value when the values of both are positive.    

By using the results of Proposition 1 and Proposition 2, we obtain the following from (4). Since 
Rp(qv) –𝑣𝑣 � (𝑥𝑥 𝑥 𝑥𝑥�)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�

��  = Rv(qv) and 0 < � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�
�� , Rv = Rv(qv) < Rp(qv) ≤ Rp(qp) = Rp holds. 

Since Rp(qp)+s� (𝑞𝑞� − 𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑��
�  = Rs(qp) and 0<� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑��

� , Rp = Rp(qp) < Rs(qp) ≤ Rs(qs) = Rs holds. 

Since Rv(qv)+s� (𝑞𝑞� − 𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑��
�  = Rsv(qv) and 0 < � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑��

� , Rv = Rv(qv )< Rsv(qv) ≤ Rsv(qsv) = Rsv 
holds. Since Rs(qsv) –𝑣𝑣 � (𝑥𝑥 𝑥 𝑥𝑥��)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�

���  = Rsv(qsv) and 0≤� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�
��� , Rsv= Rsv(qsv) ≤ Rs(qsv) ≤ Rs(qs) 

= Rs holds. Therefore, it holds that Rv < Rp < Rs, Rv< Rsv ≤ Rs. 

From (4) and (5), we obtain the following equation: 

𝑅𝑅�(𝑞𝑞�) = 𝐴𝐴 𝑞𝑞� − 𝑐𝑐(𝑞𝑞�)  + (𝑝𝑝 𝑝 𝑝𝑝)� 𝑥𝑥𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
��

�
 − 𝑣𝑣 � 𝑥𝑥𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑

�

��
                                     (9)  

= 𝑐𝑐�( 𝑞𝑞�)𝑞𝑞� − 𝑐𝑐(𝑞𝑞�) + (𝑝𝑝 𝑝 𝑝𝑝)� 𝑥𝑥𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
��

�
 − 𝑣𝑣 � 𝑥𝑥𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑

�

��
                                      

≥ (𝑝𝑝 𝑝 𝑝𝑝)� 𝑥𝑥𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
��

�
 − 𝑣𝑣 � 𝑥𝑥𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑

�

��
                                                                             

Since c(0) = 0, c(qG) = c(0)+qGc’(θ) holds by Taylor expansion, and c’(θ) ≤ c’(qG) , for 0 < θ < qG , 

c(qG) ≤ qGc’(qG) holds. Thus, we obtain the inequality in (9). By adding the previous results and  

applying (9) to each type of RG, we obtain the following proposition by: 

Proposition 4 

It holds that Rv < Rp < Rs, Rv < Rsv ≤ Rs, 0 < 𝑝𝑝 � 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑��
�  ≤ Rp, 0< (𝑝𝑝 𝑝 𝑝𝑝) � 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑��

�  ≤ Rs, 
 𝑝𝑝 � 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑��

� − 𝑣𝑣 � 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑 �
�� ≤ Rv, and (𝑝𝑝 𝑝 𝑝𝑝) � 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑���

� − 𝑣𝑣 � 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑�
���  ≤ Rsv. 

 

The inequalities in comparing each type of RG imply that the addition of s to the model under 

uncertainty increases the maximum expected profit and that the addition of v either decreases or else 

does not increase the maximum expected profit depending on the case. The remaining inequalities 

represent the lower limit of the maximum expected profit expressed as a definite integral or 0.  
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Ⅴ Numerical analysis  

 

Assuming a normal distribution for f (x) for the sake of computation, we numerically calculate the 

optimum output and maximum profit under demand certainty and uncertainty. We ignore the 

probability that x is less than 0 as this is very low. We assume that p = 100, and that s = 40 and v = 

25, when they are positive. By replacing A(q) with Ap(q), As(q), Av(q), and Asv(q), we solve (5) for 

each case. 

Assuming one-input production, we let c(q) = c1 q β be the cost function, where c1 and β are 

positive coefficients.5） Setting 1 ≤ β makes the cost function convex. (5) is specified as follows: 

𝐴𝐴(𝑞𝑞) − 𝑐𝑐𝑐(𝑞𝑞) = 𝐴𝐴(𝑞𝑞) − 𝑐𝑐�𝛽𝛽𝛽𝛽 ��� =  0 .                                                                                    (10)  
Taking the same variables at the axes as in Figure 1, Figure 2 illustrates the optimal values of q 

under certainty and uncertainty. 

The intersection points of the curve of c’(q) and the horizontal line from p on the vertical axis, and 

the curves of Ap, As, Av, and Asv represent the solutions to (10), namely qc, qp, qs, qv, and qsv. We 

assume that qs > qv, qc ≤ qM, and qs > qM in Figure 2. 

 

      
Figure 2. Optimal values of q under certainty and uncertainty calculated  

with N (μ = 20, σ = 5) for f (x) and c1 = 0.098, β = 2.7 

 
5）By letting q =a I b be the production function and c = c2 I, where c is the cost, I is the input, a, b, and c2 are 

the positive coefficients with b ≤ 1, I = (q/a)1/b holds and the cost function is described as c(q) = c2 (q/a)1/b = 
c2 a-1/b q1/b. By letting c1 = c2 a-1/b and β = 1/b, we obtain c(q) = c1 qβ with β ≥ 1. 

0
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The calculated results are presented in Table 1. [1] in Table 1 shows the results for c1 = 0.098 and β 

= 2.7, while [2] shows the results for c1 = 0.098 and β = 2.6, where β represents the difference in 

productivity. The smaller the value of β, the higher the productivity and the lower the curve of c’(q) in 

Figure 2. Figure 2 corresponds to [1] in Table 1. 

We let f (x) be a normal density function, N(μ,σ2), of which μ = 20 and σ = 5, and let 𝜙𝜙(ε) be the 

standard normal density function, ε = (x – μ)/σ, and η = (q – μ)/σ, where ε ~ 𝜙𝜙(ε). Under the above 

assumptions, by changing the variable of the integral from x to ε, we can transform (4) into (11). See 

the Appendix for the proof. 

𝑅𝑅�(𝑞𝑞) = (𝑝𝑝 𝑝 𝑝𝑝)𝜇𝜇 + 𝑠𝑠 𝑞𝑞 𝑞 (𝑝𝑝 𝑝 𝑝𝑝 + 𝑣𝑣)�(𝜇𝜇 𝜇𝜇𝜇 )� 𝜙𝜙(𝜀𝜀)𝑑𝑑𝑑𝑑
�

�
+ 𝜎𝜎𝜎𝜎(𝜂𝜂)� − 𝑐𝑐(𝑞𝑞).                 (11) 

In Table 1, q* is the optimal value of q and R* is the maximum profit in each case. Under 
uncertainty, q* is obtained by solving (10), where 𝐴𝐴(𝑞𝑞) = 𝑠𝑠 + 𝛼𝛼 � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�

� = 𝑠𝑠 + 𝛼𝛼 � 𝜙𝜙(𝜀𝜀)𝑑𝑑𝑑𝑑�
�  and α = 

p – s + v.6） R* is obtained by substituting q* into (11). Under certainty, qc is obtained by solving p = 

c’(qc), and Rc= p qc– c(qc), which is R* under uncertainty, is obtained. The calculated results in Table 

1 are consistent with these inequalities that are theoretically predicted by Proposition 2.7） 

In each case, ratio q* is the ratio of q* under uncertainty to qc and ratio R* is the ratio of R* under 

uncertainty to Rc. rate of change of q* is the rate of change of q* when β changes from 2.7 to 2.6, 

which is obtained by subtracting q* when β = 2.7 from q* when β = 2.6 and dividing the difference by 
 

6）q* is calculated numerically by computer, not analytically, from (10). 
7）In Figure 2, we assume a normal distribution for f (x), so qm and qM are infinite and do not appear in 

Figure 2, and qc ≤ qM holds. 

Table 1    q*  and R* calculated with a normal distribution for f (x )   (μ=20,  σ=5 )
[1]   The case of c 1= 0.098  β=2.7 [2]   The case of c 1= 0.098   β=2.6

q* ratio q * R* ratio R* q* ratio  q * R* ratio  R* q* R*

q c 32.82 1.000 2,066 1.000 41.80 1.000 2,572 1.000 0.274 0.245

q p 20.59 0.627 1,483 0.718 21.86 0.523 1,582 0.615 0.062 0.066

q s 23.23 0.708 1,604 0.776 26.02 0.623 1,755 0.682 0.120 0.094

q v 21.43 0.653 1,445 0.699 22.63 0.541 1,555 0.605 0.056 0.076

q sv 23.92 0.729 1,587 0.768 26.50 0.634 1,749 0.680 0.108 0.102

 q * is the optimal q  and R * is the maximum R  under certain and uncertainty in each case.

 ratio  q *  is the ratio of q * under uncertainty to q c  in each case.
 ratio  R* is the ratio of R* under uncertainty to R c in each case.
 rate of change  is the rate of change of q * or R* when β  changes from 2.7 to 2.6.

  rate of change 
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q* when β = 2.7, in each case. rate of change of R* is calculated in the same way. 

Examining ratio q* and ratio R* in Table 1 shows that the impacts of demand uncertainty on 

production are considerable. Comparing the results shown in Table 1 [1] and [2], we see that the 

smaller β is, the larger q* and R* are, but the smaller ratio q* and ratio R* are. This means that higher 

production technology increases production and profits, but also increases the impact of demand 

uncertainty on the decline in production. 

From Figure 2 we can infer that, as β deceases, the movement of the intersection to the right is 

smaller under uncertainty than under certainty. This effect is reflected in rate of change of q* and R*, 

which are smaller under uncertainty than certainty. This implies that the impact of progress in 

production technology on output, which is indicated by a smaller value of β, is weaker under 

uncertainty than under certainty. These findings are from numerical examples, but they are also 

generally considered to be true. 

 

Ⅵ Related studies 
 

Measuring demand uncertainty by price, many studies have discussed whether demand uncertainty 

decreases or increases output or investment under various assumptions. Oi (1961) demonstrates that a 

larger price uncertainty results in a larger expected profit and a higher expected utility if the firm has 

a constant or increasing marginal utility. Baron (1970) shows that optimal output is a non-increasing 

function of a firm’s index of risk-aversion, and Sandmo (1971) demonstrates that output is smaller 

under price uncertainty than under certainty. Batra and Ullah (1974) indicates that higher price 

uncertainty leads to a smaller output if the firm is risk-averse in the two-input model, and Abel (1983) 

shows that higher price uncertainty leads to a higher current investment rate. Leland (1972), 

Holthausen (1976), and Hau (2004) assume that, if firms set either the price or the quantity of 

demand, the other becomes a random variable. However, unless the quantity of demand is treated as 

stochastic, it is not possible to distinguish between supply and demand in sales. 

Research on demand uncertainty frequently assumes that firms maximize expected utility; for 

example, Hymans (1966), Baron (1970), Sandmo (1971), Leland (1972), Batra and Ullah (1974), 

Holthausen (1976), and Hau (2004). Conversely, Abel (1983), Hartman (1972), Oi (1961), and Mills 

(1962) assume that firms maximize expected profit. In the present study, we assume that firms 

maximize their expected profit, not their expected utility. Which is more useful and meaningful as a 

target for maximization under demand uncertainty in production theory: expected profit or expected 

utility? As Mills (1962) and Hymans (1966) argue, maximization of expected profit is a simple and 

special case of the maximization of expected utility. However, the following observation in Sandmo 
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(1971, pp. 65-66) should not be neglected: “We shall assume the firm’s attitude toward risk can be 

summarized by a von Neumann-Morgenstern utility function. This may be a strong assumption, 

because in many firms, decisions are typically taken by a group of individuals, and group preferences 

may not always satisfy the transitive axiom required for the existence of a utility function.” 

Additionally, the results obtained using expected utility depend on the attitude toward risk, and 

although markets are composed of three types of firms: risk averse, risk neutral, and risk seeking, the 

assumption of maximizing expected profit is independent of a firm’s attitude to risk and is very 

common among firms in markets. 

 

Ⅶ Summary and concluding remarks 
 

This study is an application of the newsvendor model to production theory. Traditionally, the 

output level has been considered to depend on price, cost, and production technology. However, 

our arguments have attempted to explain how it also depends on the probability distribution of 

demand and the nature of the product with respect to maintaining its quality and reputation, as well 

as on the degree of damage due to the cost of loss of trust by supply shortages. 

We reached the basic conclusion that optimal output and maximum profit are smaller under 

demand uncertainty than under certainty and showed that it is true, no matter how large the mean of 

the distribution is or how far to the right the distribution is spread. We classified the conditions for the 

existence of optimal output under demand certainty and uncertainty into three cases. Furthermore, we 

showed that adding demand uncertainty to the model of production provides the robustness necessary 

to ensure the existence of finite optimal output even when the cost function is concave. 

We conducted a numerical analysis using a normal distribution for demand. This numerical 

analysis calculates and compares the optimal output and the maximum profit between demand 

certainty and uncertainty, and illustrates the above discussion graphically, while showing that the 

higher the production technology, the larger the effect of uncertainty on output reduction. However, 

output is less affected by technological progress under demand uncertainty than under certainty. 
These findings are from numerical examples, but they are also generally considered to be true. 

We have assumed that firms maximize expected profit and set only the quantity of output, which 

can be understood as a simple and special case of maximizing expected utility and setting both the 

price and quantity of output. However, this assumption simplifies the discussion and the results, 

which is helpful in facilitating analyses under these assumptions. 
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Appendix 
Assuming a normal distribution for f (x), we show that (4) is rewritten as (11). First, we prove that 

� 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑�
� = 𝜇𝜇 � 𝜙𝜙(𝜀𝜀)𝑑𝑑𝑑𝑑�

� + 𝜎𝜎 � 𝜀𝜀𝜀𝜀(𝜀𝜀)𝑑𝑑𝑑𝑑�
� .  

𝜙𝜙(ε) = f (x)dx/dε = f (μ + εσ)σ holds, since x = μ + σε, x ~ f (x), and ε ~ 𝜙𝜙(ε). By changing the 

variable of the integral from x to ε, we obtain the following equation for any value of a and b (a < b):  

� 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑
�

�
=  � 𝑥𝑥𝑥𝑥(𝑥𝑥)(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑

(���)/�

(���)/�
                                                                            (A1)  

= � (𝜇𝜇 + 𝜀𝜀𝜀𝜀)𝑓𝑓(𝜇𝜇 + 𝜀𝜀𝜀𝜀)𝜎𝜎𝜎𝜎𝜎𝜎
(���)/�

(���)/�
                                                                              

= � (𝜇𝜇 + 𝜀𝜀𝜀𝜀)𝜙𝜙(𝜀𝜀)𝑑𝑑𝑑𝑑
(���)/�

(���)/�
                                                                                           

=  𝜇𝜇 � 𝜙𝜙(𝜀𝜀)𝑑𝑑𝑑𝑑
(���)/�

(���)/�
 + 𝜎𝜎� 𝜀𝜀𝜙𝜙(𝜀𝜀)𝑑𝑑𝑑𝑑

(���)/�

(���)/�
 .                                                           

By letting a = q and b = ∞, from η = (q – μ)/σ, we obtain the following equation: 

 � 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑
�

�
=  𝜇𝜇 � 𝜙𝜙(𝜀𝜀)𝑑𝑑𝑑𝑑

�

�
  +   𝜎𝜎� 𝜀𝜀𝜙𝜙(𝜀𝜀)𝑑𝑑𝑑𝑑

�

�
 .                                                      (A2) 

Thus, since � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑�
� = � 𝜙𝜙(𝜀𝜀)𝑑𝑑𝑑𝑑�

� , (4) can be rewritten as follows:  

𝑅𝑅�(𝑞𝑞) = (𝑝𝑝 𝑝 𝑝𝑝)𝜇𝜇 + 𝑠𝑠𝑠𝑠 + (𝑝𝑝 𝑝 𝑝𝑝 + 𝑣𝑣) �𝑞𝑞� 𝑥𝑥(𝑥𝑥)
�

�
𝑑𝑑𝑥𝑥 𝑝 � 𝑥𝑥𝑥𝑥(𝑥𝑥)

�

�
𝑑𝑑𝑥𝑥� 𝑝 𝑐𝑐(𝑞𝑞)                    (A3) 

= (𝑝𝑝 𝑝 𝑝𝑝)𝜇𝜇 + 𝑠𝑠 𝑞𝑞 𝑞 (𝑝𝑝 𝑝 𝑝𝑝 + 𝑣𝑣)�(𝜇𝜇 𝜇𝜇𝜇 )� 𝜙𝜙(𝜀𝜀)𝑑𝑑𝑑𝑑
�

�
+ 𝜎𝜎� 𝜀𝜀𝜙𝜙(𝜀𝜀)𝑑𝑑𝑑𝑑

�

�
� − 𝑐𝑐(𝑞𝑞).               

Since � 𝜀𝜀𝜀𝜀(𝜀𝜀)𝑑𝑑𝑑𝑑�
� = 𝜙𝜙(𝜂𝜂) holds from the property of the standard normal distribution, (4) can be 

rewritten as follows (this is (11)): 

𝑅𝑅�(𝑞𝑞) = (𝑝𝑝 𝑝 𝑝𝑝)𝜇𝜇 + 𝑠𝑠 𝑞𝑞 𝑞 (𝑝𝑝 𝑝 𝑝𝑝 + 𝑣𝑣)�(𝜇𝜇 𝜇𝜇𝜇 )� 𝜙𝜙(𝜀𝜀)𝑑𝑑𝑑𝑑
�

�
+ 𝜎𝜎 𝜙𝜙(𝜂𝜂)� − 𝑐𝑐(𝑞𝑞).               (A4) 

 
JEL Classification:  D21 D24 D81 D84 
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